High-capacity adsorption of Cr(VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone.

نویسندگان

  • Shaochen Wei
  • Dongtian Li
  • Zhe Huang
  • Yaqin Huang
  • Feng Wang
چکیده

A hierarchical porous carbon obtained from pig bone (HPC) was utilized as the adsorbent for removal of Cr(VI) from aqueous solution. The effects of solution pH value, concentration of Cr(VI), and adsorption temperature on the removal of Cr(VI) were investigated. The experimental data of the HPC fitted well with the Langmuir isotherm and its adsorption kinetic followed pseudo-second order model. Compared with a commercial activated carbon adsorbent (Norit CGP), the HPC showed an high adsorption capability for Cr(VI). The maximum Cr(VI) adsorption capacity of the HPC was 398.40 mg/g at pH 2. It is found that a part of the Cr(VI) was reduced to Cr(III) on the adsorbent surface from desorption experiment data. The regeneration showed adsorption capacity of the HPC can still achieve 92.70 mg/g even after fifth adsorption cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of chromium (VI) from aqueous solution by adsorption using cousinia eryngioides boiss and activated carbon

Adsorption capacity of Cr (VI) onto cousinia eryngioides boiss, activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH, temperature, agitation speed, absorbent dose and particle size. Cr (VI) removal is pH dependent and found to be maximum at pH 2.0. The amounts of Cr (VI) adsorbed increased with increase...

متن کامل

Optimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr(VI) adsorption from aqueous solution

In this study, ZIF-67 was synthesized through solvothermal method to remove Cr(VI) ions from aqueous solution. To improve the structural properties of ZIF-67 and its adsorption capacity, optimization of the synthesis conditions was carried out based on maximum Cr(VI) uptake. From experiments, the optimum condition was revealed as solvent: metal ion molar ratio of 4.6:1, ligand: metal ion molar ...

متن کامل

Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution

Owing to the unique microporous structure and high specific surface area, porous carbon could act as a good carrier for functional materials. In this paper, polyacrylonitrile (PAN)-based porous carbon materials (PPC-0.6-600, PPC-0.8-600, PPC-0.6-800 and PPC-0.8-800) were prepared by heating KOH at 600°C and 800oC for the removal of Cr(VI) from aqueous solution. The adsorbent was characterized b...

متن کامل

حذف کروم (VI) از محلول آبی بوسیله کربن فعال اصلاح شده با سورفکتانت کاتیونی بنزآلکونیوم کلراید

Background and purpose: Chromium hexavalent compounds are carcinogens that are found in groundwater as chromate and dichromate negative ions. The aim of this study was to remove Cr (VI) from water by activated carbon modified with cationic surfactant alkyl dimethyl benzyl ammonium chloride (Benzalkonium chloride). Materials and methods: In terms of the Critical Micelle Concentration (CMC) of...

متن کامل

Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution

The aim of this study was to evaluate the adsorption capacity of the novel coated activated carbon by chitosan for removal of Cr (VI) and Cd (II) ions from single and bi-solute dilute aqueous solutions. In addition, the adsorption abilities of activated carbon (AC), chitosan (CH) and chitosan / activated carbon composite (CHAC) have been compared. Adsorption studies were performed in a batch sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2013